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The Markovian diffusion theory is generalized within the framework of the special theory of relativity. Since
the velocity space in relativity is a hyperboloid, the mathematical stochastic calculus on Riemanian manifolds
can be applied but adopted here to the velocity space. A generalized Langevin equation in the fiber space of
position, velocity, and orthonormal velocity frames is defined from which the generalized relativistic Kramers
equation in the phase space in external force fields is derived. The obtained diffusion equation is invariant
under Lorentz transformations and its stationary solution is given by the Jüttner distribution. Besides, a
nonstationary analytical solution is derived for the example of force-free relativistic diffusion.

DOI: 10.1103/PhysRevE.80.051110 PACS number�s�: 05.40.�a, 05.10.Gg, 03.30.�p, 04.20.�q

I. INTRODUCTION

The formulation of a consistent theory of Markovian dif-
fusion within the framework of the relativity theory is a
long-standing problem in physics. Over the years, numerous
studies have been devoted to this issue �see, e.g., �1–13��
with different and apparently irreconcilable points of view.
At least up to the knowledge of the author, a generally ac-
cepted consistent solution of this problem is still missing.
However, besides its fundamental theoretical interest, such
theory is of particular importance in several applications
such as in high-energy collision experiments �see, e.g., �14��,
astrophysics �see, e.g., �15��, and others.

An alternative physical approach for the description of a
relativistic gas in a heat bath is given by statistical thermo-
dynamics and the Boltzmann equation. Jüttner derived the
thermal equilibrium distribution for a relativistic gas already
in 1911 �16�. After that, many authors have given important
contributions to the development of the relativistic kinetic
theory �for an introduction, see, e.g., �17,18��. In spite of this
progress, in recent years a controversial debate about the
correct generalization of Maxwell’s velocity distribution in
special relativity arose �8,19–21�. Recently, numerical micro-
scopic one-dimensional simulations �22� and a critical analy-
sis of alternative findings �23� yield arguments in favor of the
Jüttner distribution. Lately, a comprehensive review of rela-
tivistic diffusion processes has been published �13�. Besides
the issue of the stochastic relativistic diffusion theory, it also
includes relativistic equilibrium thermostatics and micro-
scopic models for Langevin-type equations and a more com-
plete list of references.

Diffusion theory in the Euclidean space Rd is a well-
developed topic �see, e.g., �24,25��. However, the description
of diffusion on non-Euclidean manifolds Md is a subject con-
taining several pitfalls. There exists a well-developed rigor-
ous mathematical theory of stochastic differential equations
and diffusion processes on Riemannian manifolds with a
definite metric signature �see, e.g., �26,27��. The stochastic
calculus on Riemannian manifolds found considerable inter-
est in mathematics and has played a central role in recent

years within the analysis in path and loop spaces in topology
and other fields. However, this mathematical approach can-
not be applied to describe diffusion on Minkowski or
pseudo-Riemannian manifolds with indefinite metrics. In the
present paper, we derive a physically motivated modification
of this calculus to describe diffusion in the phase space of
position and velocity, in which the difficulties in the descrip-
tion of diffusion on manifolds with indefinite metric signa-
ture are bypassed.

The main aim of the paper is the derivation of a relativ-
istic diffusion equation in phase space, which generalizes the
nonrelativistic Kramers equation. A crucial factor in the deri-
vation is the observation that the velocity space in relativity
is a hyperboloid �or a special three-dimensional Riemannian
manifold� embedded into the velocity Minkowski space. This
requires the application of the stochastic calculus on Riema-
nian manifolds adopted to the velocity space. Correspond-
ingly, in this approach a relativistic stochastic differential
equation is defined, which generalizes the Langevin equation
and introduces a moving velocity frame necessary for a con-
sistent treatment. As will be shown, the derived relativistic
diffusion equation satisfies the general principle of special
relativity and is invariant under Lorentz transformations. The
steady-state solution of this equation for a heath bath with
constant friction coefficient yields the Jüttner distribution.

The paper is organized as follows. In Sec. II, the general
concept of the mathematical stochastic calculus on Riemann-
ian manifolds is briefly described. In Sec. III,, a generalized
relativistic Langevin equation in the fiber bundle of position,
velocity, and orthonormal velocity frames is defined and the
relativistic diffusion equation for the probability density
function or the transition probability is derived. In Sec. IV,
the steady-state solution for a relativistic gas in a heat bath
with constant friction coefficient and, in Sec. V, the non-
steady solution for the force-free case is derived; in Sec. VI,
the conclusions are presented. In the Appendix, basic formu-
las and theorems of the stochastic calculus on Euclidean and
Riemannian manifolds are summarized, which are required
for an understanding of the paper and fix the notations.

II. MATHEMATICAL STOCHASTIC CALCULUS
ON RIEMANNIAN MANIFOLDS

Stochastic differential equations in diffusion theory in a
d-dimensional Euclidean space Rd with continuous pathway*jherrman@mbi-berlin.de
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are defined by the fundamental d-dimensional Wiener pro-
cess Wa�t�. On a Riemannian manifold Md, the fundamental
Wiener process is difficult to handle. By using an inad-
equately posed formulation of a stochastic differential equa-
tion, it is not assured that its solution remains on the mani-
fold Md, which leads to inconsistent results. The key idea in
the mathematical concept of diffusion on general
d-dimensional Riemannian manifolds Md �with definite met-
ric signature� is to define a stochastic process on the curved
manifold using the fundamental Wiener process, each com-
ponent of which is a process in the Euclidean space Rd

�26,27�. Intuitively, we can understand this concept as fol-
lows. Consider a two-dimensional stochastic motion of a par-
ticle on a plane. If the trajectory of the particle is traced in
ink and a sphere on the plane is rolled along the stochastic
curve without slipping the resulting transferred path defines a
random curve or a stochastic Markovian process on the
sphere. This method can be applied for diffusion on a general
Riemannian manifold. The tangent space of a Riemannian
manifold is endowed with Euclidean structure and, therefore,
we can move the manifold in the tangent space by construc-
tion of a parallel translation along the stochastic curve with
the help of the orthonormal frame vectors ea=ea

i �x��i
�i ,a=1, . . . ,d� and the Christoffel connection coefficients
�ib

j , x= �x1 , . . . ,xd� ,�i=� /�xi. In local coordinates on a Rie-
mannian manifold, the infinitesimal motion of a smooth
curve ci�t� in Md is that of �i�t� in the tangent space �which
can be identified with Rd� by using a parallel transformation:
dci=ea

i �x�d�a and dea
i �x�=−�ml

i ea
l dcm. Therefore, a random

curve can be defined in the same way by using the canonical
realization of a d-dimensional Wiener process �defined in the
Euclidean space� and substituting d�a→dWa�t�. Thus, the
stochastic differential equations describing diffusion on a
Riemannian manifold in the orthonormal frame bundle O�M�
with coordinates O�M�= �xi ,ea

i � are given by

dxi��� = ea
i ��� � dW�

a + bi���d� ,

dea
i ��� = − �ml

i ea
l � dxm��� . �1�

Here �abea
i �x����eb

j �x����=gij, �iea
j =−�ik

j ea
k, gij is the Rie-

mannian metric, and �ab is the flat Euclidean metric, where
�ab is the Kronecker symbol. The components of the elemen-
tary Wiener process dWa=Wa�t+�t�−Wa�t� are defined in
the Euclidean space with the probability density P�Wa�
= �2D��t�−1/2exp�− �Wa�t��2

2D�t � and with the expectation values
�Wa�=0 and �Wa���Wb��+s��=Ds�ab. bi’s are the compo-
nents of an arbitrary tangential vector and D is the diffusion
constant, which here is independent on the time and space
variables. Equation �1� is defined in the Stratonovich calcu-
lus �denoted by the symbol ��.

Associated to each diffusion process, there is a second-
order differential operator denoted as the generator A of the
diffusion. This operator is associated with the Kolmogorov
backward equation and is defined in the Appendix for diffu-
sion processes on Euclidean and Riemannian manifolds, re-
spectively. Corresponding to Eqs. �A16� and �A17�, the dif-
fusion generator AO�M� on O�M� can be projected on Md

with f�r�= f�x ,0�, r= �xi ,ej
i� using the relation AO�M�f�r�

=AMf�x�, where

AM =
D

2
�ab�ea

i �ieb
j � j� + bi�i = 	D

2
�M + bi�i
 �2�

and �M =gij�i� j −gij�ij
k �k is the Laplace-Beltrami operator on

the manifold Md. The generalized Fokker-Planck equation is
obtained by the adjoint of the diffusion generator AM

� �which
includes the volume element �g, g=det�gij��. Since the
Laplace-Beltrami operator is self-adjoint, �M =�M

� , this
equation takes the form

�	

��
= − divx�b	� +

D

2
�M	 , �3�

where divx�b	�=g−1/2 �i�g1/2bi	� is the divergence operator
on the Riemannian manifold, 	=	�x ,� �y ,0� is the transi-
tion probability with the initial condition 	�x ,0 �y ,0�
=��x-y� and adequate boundary conditions at infinity. The
probability density 
�xi ,�� is determined by the same equa-
tion with the initial condition 
�x ,�=0�=
0�x�.

A remarkable feature of Markovian diffusion on a Rie-
mannian manifold is the supposition that for the diffusion
coefficients in Eq. �1� only the orthonormal frame coeffi-
cients ea

i �x� are admissible, which are directly related to the
geometry of the Riemannian manifold. In contrast, on Eu-
clidean manifolds, a much more general class of diffusion
coefficients are permitted.

III. RELATIVISTIC DIFFUSION

A direct application of the mathematical calculus of dif-
fusion processes on general Riemannian manifolds for rela-
tivistic physics is not possible due to the supposition restrict-
ing the stochastic formalism to the special case of a
Riemannian manifold with a definite metric signature, while
in relativity theory the Minkowski or pseudo-Riemannian
manifolds exhibit an indefinite metric signature �−,+,+ ,+�.
Moreover, it has been proven that Markovian diffusion pro-
cesses in the base manifold �position space� on a Minkowski
or pseudo-Riemannian manifold do not exist �3,4�. However,
considering more carefully the mathematical model de-
scribed by Eq. �1�, one can recognize a significant difference
to the physical nonrelativistic diffusion model described by
the Langevin equation. In Eq. �1�, the noise term directly acts
on the position variable in the base space, while the noise
term in the Langevin equation operates like a force on the
change in the velocity in the tangent space. This crucial dif-
ference in the mathematical model to the physically moti-
vated Langevin approach enables a generalization of the
Markovian diffusion theory within the framework of the spe-
cial relativity theory performed in the phase space of coordi-
nates xi and the spatial components of the four velocity ui

with �i=1,2 ,3�.
The four velocity in special relativity defined by u�

=dx� /d�, ��=0,1 ,2 ,3� is a hyperboloid �or pseudosphere�
described by the relation
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�u0�2 − �u1�2 − �u2�2 − �u3�2 = 1, �4�

where � is the proper time with d�=−��
dx�dx
, ��
 is the
Minkowski metric. This means that the relativistic velocity
space is a noncompact hyperbolic three-dimensional Rie-
mannian manifold �and not pseudo-Riemannian� embedded
into the four-dimensional Minkowski velocity space. There-
fore, with an appropriate modification, we can apply for the
velocity space the mathematical stochastic calculus for Rie-
mannian manifolds as presented in Sec. I and in the Appen-
dix. Since the stochastic force acts directly only on the
change in the velocity and not on the position coordinates,
we can define the relativistic generalization of the Langevin
equation in a fiber bundle here denoted by F�ML� with
�xi ,ui ,Ea

i �=F�ML�, where xi belongs to the Lorentzian base
manifold ML, the relativistic velocity ui to the tangent space
TML and Ea

i �u� are the moving orthonormal frames in the
hyperbolic velocity space. Locally, this fiber bundle is simply
the product space of these three subspaces. With a corre-
sponding modification of Eq. �1�, the generalized relativistic
Langevin equations can be defined in the fiber bundle space
F�ML� by

dxi��� = ui���d� ,

dui��� = Ea
i ��� � dWa��� + Fi���d� ,

dEa
i ��� = − �ml

i �u�Ea
l ��� � dum���

= − �ml
i �u�Ea

l ����Eb
m��� � dWb��� + Fm���d�� . �5�

Here � is an evolution parameter along the world lines of the
particles, which can be chosen as the proper time. The labo-
ratory time t=�u0 /c is a function of the proper time � and u0,
which here and below is defined by u0= �1+ �u1�2+ �u2�2

+ �u3�2�1/2. �ml
i �u� are the Christoffel connection coefficients

on the hyperboloid and Fi=Ki /m, where Ki are the spatial
components of the four force, m is the rest mass of the par-
ticles, and the indices a ,b denote the spatial components in
the hyperbolic space �a ,b=1,2 ,3�. Since the stochastic term
dWa��� does not act directly on the position variable xi���,
the indefinite signature of the Lorentzian manifold here does
not create any difficulty, as it arise for a stochastic differen-
tial equation as Eq. �1�, but for a manifold with indefinite
metric. The stochastic force is described as above by the
fundamental Wiener process with �Wa�=0 and the correlator
�Wa���Wb��+s��=Ds�ab is defined by an empirical diffusion
constant D, which here is independent on the velocity. Suf-
ficient conditions for the existence and uniqueness of the
stochastic differential Eqs. �5� are that the drift and diffusion
coefficients satisfy the uniform Lipschitz condition and the
stochastic process X���= �x��� ,u���� is adapted to the
Wiener process Wa���, that is, the output X��2� is a function
of Wa��1� up to that time ��1��2� �25�. The moving frames
in the hyperbolic velocity space are defined by the relation

�abEa
i Eb

j = Gij , �6�

or equivalently,

GijEa
i Eb

j = �ab, �7�

where Gij is the Riemannian metric of the hyperbolic veloc-
ity space, Gij is the inverse matrix of Gij, and the Christoffel
connection coefficients �ml

i �u� on the hyperboloid are given
by

� jk
i �u� =

1

2
Gim��Gjm/�uk + �Gmk/�uj − �Gjk/�um� . �8�

Since the manifold on the hyperboloid is embedded into the
Minkowski space, the metric Gij�u� can be calculated from
the infinitesimal arc length given by dsu

2=−�duo�2+ �du1�2

+ �du2�2+ �du3�2 with u0= �1+ �u1�2+ �u2�2+ �u3�2�1/2. In this
way, we obtain dsu

2=Gij�u�duiduj with Gij�u�=�ij
− �uiuj� / �u0�2, G=det Gij = �u0�−2, and � jk

i �u�=−uiGjk. Corre-
sponding the definition of fundamental vector fields on O�M�
in the Appendix, one can now introduce the fundamental
horizontal vector fields Ha and H0 on the fiber bundle F�ML�.
With corresponding modifications, we find analogous as in
Eq. �A16�,

Ha = Ea
i �

�ui − �ml
i �u�Ea

l Eb
m �

�Eb
i ,

H0 = ui �

�xi + Fi �

�ui − �ml
i �u�Ea

l ���Fm �

�Ea
i . �9�

The diffusion operator AF�ML� for the stochastic process is
given, as in Eq. �A17�, by

AF�ML� =
D

2
�abHaHb + H0. �10�

We project the stochastic curve from the fiber space F�ML�
with coordinates r= �xi ,ui ,Ea

i � to the phase space with coor-
dinates �xi ,ui� :AF�ML�f�r�=APf�x ,u ,0�, where the diffusion
generator in the phase space AP is given by

AP =
D

2
�abEa

i �

�uiEb
j �

�uj + ui � /�xi + Fi � /�ui. �11�

The special-relativistic diffusion equation in the phase space
is given by the adjoint of the operator AP and analogous to
Eq. �A20� the generalized relativistic Kramers equation takes
the form

�	

��
= − ui�	

�xi − divu�F	� +
D

2
�u	 , �12�

where �u is the Laplace-Beltrami operator of the hyperbolic
velocity space given by

�u = Gij �2

�ui � uj − Gij�ij
k �

�uk =
1

�G

�

�ui	�GGij �

�uj
 ,

�13�

and the corresponding divergence operator by

divu�F	� =
1

�G

�

�ui ��GFi	� , �14�

with G=det�Gij� and Gij =�ij +uiuj.
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Equation �12� represents the relativistic generalization of
the Kramers equation for the probability density function
	=��� ;x ,u� with the initial condition ���=0;x ,u�
=�0�x ,u�. The transition probability is determined by the
same equation but is defined by the initial condition

	�x,u,0�x0,u0,0� = 1
�G

��u1 − u0
1���u2 − u0

2���u3 − u0
3���x1

− x1
0���x2 − x2

0���x3 − x3
0� .

If the force Fi depends on the time t, we have to substitute t
by t=��1+ �u1�2+ �u2�2+ �u3�2�1/2 /c. For an external electro-
magnetic field F�
, the normalized force Fi is given by Fi

=eF

i u
. For small velocities ��ui�2�1�, Eq. �12� pass over to

the nonrelativistic Kramers equation �28�.
In the relativistic framework, the Lorentz invariance of

the physical laws is one of the most fundamental property.
Equation �12� refers to a special inertial rest frame � of an
observer. Now consider a second observer at rest in an an-
other inertial frame �� that moves with constant velocity w
relative to �. There exist no doubt and strong arguments in
the literature that the probability density function ��� ;x ,u�
has to be a scalar in the phase space to be consistent within
the relativistic framework, i.e., it fulfills the condition

�����,x�,u�� = ���,x,u� , �15�

where the transformed variables

x�i = � j
ixj + �0

i x0, u�j = � j
iuj + �0

i u0, �� = � �16�

are related by the Lorentz transformation. Within the ap-
proach of relativistic statistical physics, Eq. �15� was proven
by van Kampen �29� for the one-particle distribution func-
tion. Note that before, several authors argued that the relation
�15� can be proven by the Lorentz invariance of the phase-
space volume element d3xd3u �see, e.g., �18��. But as dis-
cussed in Refs. �29,30�, this argument ignores the fact that
the observations in � and �� refer to different hypersurfaces;
it belongs in � to the hypersurface x0=const, but in �� it
does not belong to the hypersurface x�0=const. Note that in
contrast, the particle density and the current density �i.e., the
integrals over the velocities� transform like a four vector. The
Lorentz invariance of ��� ;x ,u� requires that Eq. �12� is also
invariant with respect to a Lorentz transformation. By using
x0=�u0, the chain rule � /�xi=� j

i � /�x�j and the inverse trans-

formation ui= �̄ j
iu�j + �̄0

i u�0 with �̄�
���

�=��
�, we find

ui��

�xi = u�i ��

�x�i − u0�0
i ��

�x�i

��

��
=

��

���
+ u0�0

i ��

�x�i . �17�

On a Riemannian manifold, the divergence operator and
the Laplace-Beltrami operator are intrinsically invariant with
respect to general coordinate transformations. Therefore,
Lorentz transformation on the hyperboloid does not change
the explicit form of these operators. For the divergence op-
erator, this can be simply proven by the transformation prop-
erty of the covariant differentiation DjF

i
�Fi /�uj +� jk
i Fk

given by Dj�F�i= ��u�i /�uk���ul /�u�j�DlF
k. For the diver-

gence operator divu�F��=Dj�Fj��, this yields the relation
Dj�F�j =DjF

j. The invariance of the Laplace-Beltrami opera-
tor �u�=Dj�Gij�i�� can be similarly proven. Since Gij�i�
=Aj transforms like a vector and the divergence DjA

j is as
shown above an invariant operation, the relation �u�
=�u�� follows. In the same way, the invariance of the infini-
tesimal arc length dsu

2 is proved. By using Eq. �17�, we ex-
press the variables xi, uj by the new variables x�i, u�j in the
inertial frame �� and account the invariance of the diver-
gence and Laplace-Beltrami operator. Then Eq. �12� takes
the form

��

���
= − u�i ��

�x�i − divu��F��� +
D

2
�u�� . �18�

Thus, the derived relativistic diffusion equation satisfies the
general principle of special relativity and is invariant under
Lorentz transformations.

Note that Eq. �12� differs from previously derived relativ-
istic diffusion equations. Debbasch and Rivet �6� introduced
a phenomenological relativistic Langevin equation in the
phase space and derived from this a generalized Kramers
equation of the classical Ornstein-Uhlenbeck process, in
which the diffusion term is given by the three-dimensional
Euclidean-Laplacian in the momentum space. The difference
of this result to Eq. �12� is explained by the fact that in �6�
the Wiener process is described in the same way as in a
Euclidean space; but the velocity space is a special Riemann-
ian manifold, which requires to use a rigorous stochastic cal-
culus on non-Euclidean manifolds. As explained in Sec. II
and above the introduction of a moving velocity frame Ea

i �u�
in the relativistic Langevin equations �5� is the crucial point,
which avoids the difficulties in the description of the Wiener
process on Riemannian manifolds. If we ignore this problem
and substitute Ea

i �u� by the Kroneker symbol, the diffusion
term in Eq. �12� passes into the corresponding diffusion term
of Ref. �6�. A different more general approach was presented
by Dunkel and Hänggi �8,13�, but the problem to handle the
Wiener process on the hyperbolic velocity space in a rigor-
ous way was also not achieved and the derived diffusion
equation as well differs from Eq. �12�.

The relativistic diffusion process considered up to now is
parametrized in terms of the proper time �. But it is a matter
of convenience to parametrize this process alternatively in
terms of the time x0 of the inertial frame of the observer. The
derivation of the diffusion equation in this parametrization
can be performed using the mathematical theorem of random
time change in stochastic differential equations �see, e.g.,
�25,26��. The proper time � is related with x0 by d�
= �u0�−1dx0, depending on the stochastic variables ui. This
means that the transformation to x0 is a random time trans-
formation. Therefore, the time change in an Ito integral is
again an Ito integral but driven by a different Wiener process

dW̃�x0�=dW����u0�1/2 �25,26�. This rule for a random time
change refers to the Ito interpretation, but one can use the
relation �A9� for the change in the drift and diffusion coef-
ficients if an Ito integral is transformed into a Stratonovich
integral. Using d�= �u0�−1dx0, the relativistic Langevin equa-
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tions �5� can be rewritten in the parametrization with x0 as
follows:

dxi�x0� = ui����u0�−1dx0,

dui�x0� = Ea
i �x0��u0�−1/2 � dW̃�x0� + Fi�u0�−1dx0

−
D

2
�abEa

i �x0�Eb
j �x0��u0�−1/2 �

�

�uj ��u
0�−1/2�dx0,

dEa
i �x0� = − �ml

i �u�Ea
l �x0� � dum�x0� . �19�

The generalized relativistic Kramers equation in the time
parametrization x0 of the observer inertial frame therefore
can be derived analogous as above and leads to the following
result:

u0 �	

�x0 = − ui�	

�xi − divu�F	� +
D

2
�u	 . �20�

As seen analogous to the relativistic Boltzmann equation,
the left-hand side and the first term o.r.s. of Eq. �20� can be
identified with the covariant expression u�� /�x�, while the
other terms are identical with corresponding terms in Eq.
�12�.

For the solution of the relativistic diffusion equation, it is
convenient to introduce the hyperbolic coordinate system for
the four velocity defined by u1=sh� sin � cos 
, u2

=sh� sin � sin 
, u3=sh� cos �, and u0=ch�. We denote
the velocities in the non-Cartesian coordinates by ū1=�, ū2

=�, ū3=
, and a=1,2 ,3. The metrics in this coordinates are
simply to calculate and are given by G11=1, G22=sh2�,
G33=sh2� sin2 �, and Gij =0 for i� j. With the given metric,
the Laplace-Beltrami operator �u in the hyperbolic velocity
space takes the form

� =
�2

��2 + 2cth�
�

��
−

1

�sh��2	 �2

��2 + ctg�
�

��

+
1

�sin ��2

�2

�
2
 �21�

and

divu�F	� = �sh��−2 �

��
��sh��2Fa	�

− �sh��−1�sin ��−1 �

��
�sin �F�	�

− �sh��−1�sin ��−1 �

�

�F
	� �22�

is the divergence operator in the hyperbolic velocity space.
Here the force in the hyperbolic coordinate system Fa, F�,
F
 is related with Fi by Fa= �ch��−1�sin ��cos 
F1

+sin 
F2�+cos �F3�, F�= �sh��−1�cos ��cos 
F1+sin 
F2�
−sin �F3�, and F
= �sh��−1�sin ��−1�−sin 
F1+cos 
F2�.
The probability density is determined by the initial condition
���=0;xi ,� ,� ,
�=�0�xi ,� ,� ,
� and the transition prob-
ability by

	�x,�,�,
,0�x0,�0,�0,
0,0�

= �sh��−2�sin ��−1��� − �0���� − �0���
 − 
0�

���x1 − x1
0���x2 − x2

0���x3 − x3
0� .

IV. STEADY-STATE SOLUTION OF PARTICLES IN A
HEAT BATH: THE JÜTTNER DISTRIBUTION

First, we consider particles with a rest mass m of a gas in
an isotropic homogenous heat bath. The interaction of par-
ticles with the bath is described by a random noise force and
a friction force. In the nonrelativistic theory, the friction
force is given by f i=−
mvi, where 
 is the friction coeffi-
cient and vi are the components of the nonrelativistic veloc-
ity. The relativistic generalization of the friction force re-
quires the introduction of a friction tensor 
�

i similar to the
pressure tensor in special relativity theory �6,8�. The friction
force is expressed as Fi=
�

i �u�−U��, where U� is the four
velocity of the heat bath. For an isotropic homogeneous heat
bath, the friction tensor is given by


�
i = 
���

i + uiu�� , �23�

with 
 denoting the scalar friction coefficient measured in the
rest frame of the particles. In the laboratory frame, the heat
bath is at rest described by U�= �1,0 ,0 ,0�. Therefore, the
friction force is given by Fi=−
uiu0 or in hyperbolic coordi-
nates Fa=−
sh�, F�=F
=0. We consider the spatial homog-
enous and isotropic solution of Eq. �12� with Eqs. �13�, �14�,
and �23� described by

���a�
��

=
D

2
� �2

��2 + 2cth�
�

��
���a�

+ 
�sh��−2 �

��
��sh��3����� . �24�

The steady-state solution of this equation is given by ����
=C exp�−�ch�� with �=2
 /D and C=4�K2��� /�. K2���
denotes the modified Hankel function. This distribution is
identical with the Jüttner equilibrium distribution if we use
the relation �= c2m

kT , where T is the temperature of the heath
bath and k is the Boltzmann constant. Consequently, we find
for the diffusion constant D=2
kT /mc2. The above-derived
relativistic diffusion Eq. �12� yields for the three-dimensional
case the correct thermodynamic relativistic equilibrium dis-
tribution for a constant friction coefficient. Note that in pre-
viously derived relativistic diffusion equations �6,8�, the Jütt-
ner equilibrium distribution for a relativist gas only arises as
the steady-state solution for a specifically adapted energy-
dependent friction constant 
=
�u0�. Recently, fully relativ-
istic one-dimensional molecular-dynamics simulations fa-
vored the Jüttner distribution in the one-dimensional case
�22�. Besides an independent support of this distribution is
the kinetic theory based on the relativistic Boltzmann equa-
tion, which yields as the only distribution function, which
implies a vanishing of the collision term in equilibrium the
Jüttner distribution �see, e.g., �17,18��.
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V. NONSTEADY SOLUTION FOR THE FORCE-FREE
CASE

Now we consider the nonsteady solution of Eq. �12� for a
spatial homogenous gas with vanishing force Fi. We use the

Laplace transformation 	�� ,� ,
 ,��=�0
�	̃�� ,� ,
 ,��

�exp�−���d� and for the eigenvalue functions the

ansatz 	̃M
J �� ,� ,
 ,��=gJ

����YM
J �� ,
�, where YM

J �� ,
�
=PM

J ���eiM
 are the spherical harmonics with the associated
Legendre functions PM

J ���. For gJ
����, the following eigen-

value equation is derived:

�D

2
� �2

��2 + 2cth�
�

��
−

J�J + 1�
sh2�

� − ��gJ
���� = 0. �25�

Here the discrete index J takes the values J=0,1 ,2 , . . . and
M =−J ,−J+1, . . . ,0 ,1 , . . . ,J. The eigenfunctions for the
Laplace-Beltrami operator with the eigenvalues �= D

2 ��2

+1�, satisfying the boundary condition, are given by

gJ
��z� = CJ

��z2 − 1�J	 d

dz

J+1

cos�� arch z� , �26�

with z=ch� and CJ
�= �−1�J+1�k=0

J 1
�2�

��2+k2�−1/2. The eigen-

functions 	̃M
J �� ,� ,
 ,�� satisfy the relations of orthogonal-

ity and completeness. The transition probability is deter-
mined by the initial condition 	�� ,� ,
 ,�=0 ��0 ,�0 ,
0 ,0�
= �sh��−2�sin ��−1���−�0����−�0���
−
0�. Using the or-
thogonality relation, we can write

	��,�,
,���0,�0,
0,0�

= �
M,J
�

0

�

	̃M
J ��,�,
,��	̃M

�J��0,�0,
0,��

�exp�−
D

2
��2 + 1���d� . �27�

Let us now consider the fundamental solution J=0. Sub-
stituting g0

����=− 1
�2�

�sh��−1sin �� into Eq. �27� gives the
transition probability

	��,���0,0� = C	�
D

2

−1/2

exp�− �
D

2
� sh���0

D� �
sh�sh�0

� exp�−
�2 + �0

2

2D�
� , �28�

with C=2�4��−3/2. For �0→0, this solution was first found
in �31�. For small velocities ���1�, the transition distribu-
tion shows a remarkable behavior. If we solve the corre-
sponding nonrelativistic Kramers equation �28�, substituting
in Eq. �25� sh�→�, ch�→1, we find for J=0 g0

����=
− 1

�2�
���−1sin ��, but the eigenvalue is given by �= D

2 �2 and
the solution now is

	�a,��a0,0� = C	D

2
�
−1/2

�−1�0
−1�exp�−

�� − �0�2

2D�
�

− exp�−
�� + �0�2

2D�
�� . �29�

For �0=0, Eq. �29� passes to the known Wiener distribution
in the velocity space. In the limit ��1, the short-time be-
havior of Eq. �29� is up to an exponential small factor in
agreement with Eq. �28�; however, in the long-time behavior
both solutions differ by the exponential factor exp�− D

2 ��. In
Fig. 1, the relativistic distribution �28� is presented by the
solid lines for �0=0 and the Wiener distribution �29� by the
dotted lines. As can be seen, both distributions differ by or-
ders of magnitudes even in the nonrelativistic region a�1
for long times D��1. This discrepancy can be explained by
the topological properties of the hyperbolic space �included
by the boundary conditions�, which are different from that of
the Euclidean space in the nonrelativistic theory. The con-
nection between local and global properties of diffusion pro-
cesses is a topic in the mathematical field of heat kernels on
Riemannian manifolds �32�. The appearance of the factor
exp�− D

2 �� can also be explained by physical arguments; it
comes from that in the hyperbolic coordinates, the Jacobian
is proportional to sh2�, which is exponentially large for �
→�. For large �, the entire velocity space is explored and
the small factor exp�− D

2 �� cancels the exponentially large
Jacobian and guarantees the probability conservation.

VI. CONCLUSIONS

In conclusion, a theory of Markovian diffusion processes
within the framework of the special theory of relativity is
formulated. Since the velocity space in relativity is a hyper-
boloid �or a special three-dimensional Riemannian manifold�
embedded into the velocity Minkowski space the mathemati-
cal stochastic calculus on Riemannian manifolds is applied
here adopted to the velocity space. With the definition of a
stochastic differential equation, which generalizes the Lange-
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FIG. 1. Relativistic �solid thick lines, Eq. �28�� and nonrelativ-
istic �dotted thin lines, Eq. �29�� distributions for different times D�
and �0=0.

JOACHIM HERRMANN PHYSICAL REVIEW E 80, 051110 �2009�

051110-6



vin equation within the frame of relativity theory and intro-
duces a moving velocity frame, a relativistic diffusion equa-
tion is derived. This generalized Kramers equation is
invariant under Lorentz transformations. In the case of a rela-
tivistic gas in a heat bath with constant friction coefficient,
its steady-state solution is identical with the Jüttner distribu-
tion. An analytical nonsteady solution for the transition prob-
ability is given for the special case of vanishing external
fields. This solution differs from the Wiener velocity distri-
bution even for small velocities due to topological reasons.

The formalism presented in this paper can be extended to
a theory within the framework of general relativity. This will
be done in a forthcoming paper.

APPENDIX

In this appendix, some basic notations, formulas, and
theorems of the stochastic calculus on Euclidean and Rie-
mannian manifolds are summarized.

Diffusion processes in a d-dimensional Euclidean space
are described by stochastic differential equations of the form
�24–27�

dXi = �a
i ��,X�dWa + bi��,X�d� . �A1�

X= �X1 , . . . ,Xd��Rd is a stochastic process with X�0�=x; x
= �x1 , . . . ,xd�, and � is the time ���0�. The diffusion coeffi-
cients �a

i �� ,X� are given matrices and the drift coefficients
bi�� ,X� are coefficients of a smooth vector field. Wa’s are the
components of the elementary Wiener process. Equation
�A1� can be transformed into an integral equation

X�
i = X0

i + �
0

�

�a
i �s,X�dWs

a + �
0

�

bi�s,X�ds . �A2�

The stochastic integral in the second term of Eq. �A2� is
defined as the limit �0

��a
i �s ,X�dWs

a=�i=1
n �a

i �si
� ,X��Wa�si�

−Wa�si−1�� as n→�. This integral depends on the choice of
the intermediate point si

�. With the choice si
�=si−1 �postpoint

rule�, the Ito stochastic integral is defined. The Ito integral is
a Markovian process and plays a fundamental role in the
theory of diffusion processes and most of mathematical treat-
ments can only rigorously proven by using this calculus. Al-
ternatively, choosing si

�=si−1 �midpoint rule� the Stratonov-
ich stochastic integral is defined. The Stratonovich integral
has the advantage of leading to ordinary chain rule formulas
under a transformation. This property makes the Stratonov-
ich integral natural to use for stochastic differential equations
on Riemannian manifolds. However, in general Stratonovich
integrals are not Markovian processes, which hinders rigor-
ous mathematical treatments in most cases. Note that the
chosen interpretation has to be denoted in the differential
equation. The symbol �a

i �� ,X�dWa implies the Ito integral
interpretation and �a

i �� ,X� �dW�
a the Stratonovich interpreta-

tion.
With the Ito interpretation, the solution X�

i of Eq. �A1� is
denoted as an Ito process if the diffusion and drift coeffi-
cients satisfy the Lipschitz condition, and �a

i �� ,X� is adapted
to the fundamental Wiener process W�

a �25�. An Ito process
has the important property of being Markovian. Then Y�

= f�X�� is also an Ito process. Associated to an Ito process is
the diffusion generator A of X�,, which is defined to act on a
suitable function f by

Af = lim
t→0

Ex�f�X��� − f�x�
t

, �A3�

where x=Xo is the initial point of X�. For the stochastic
process described by Eq. �A1�, A is given by �24–27�

Af =
D

2
�ab�a

i ��,X��b
j ��,X��i� j f + bi��,X��i f . �A4�

The generator A describes how the expected value
u�� ,x�=Ex�f�X��� of any smooth function f of X evolves in
time and satisfies the following equation:

�

��
u��,x� = Au��,x� , �A5�

with u�0,u�= f�x�. Equation �A5� is denoted as the Kolmog-
orov’s backward equation. The Fokker-Planck equation �or
forward Kolmogorov equation� describes how the probabil-
ity density function ��� ,x� of X� evolves with time. The
probability density function can be used to calculate the
expected value Ex�f�X��� by Ex�f�X���
=��f�x���� ,x�dx1¯dxd, where � in the domain of the
d-dimensional space of the variables X1,. . ..,Xd. The Fokker-
Planck equation within the Ito integral interpretation is given
by the following equation:

�

��
���,x� = A����,x� , �A6�

with the adjoint operator A�,

A�f =
D

2
�ab�i� j�a

i ��,X��b
j ��,X�f − �ib

i��,X�f . �A7�

Since the stochastic calculus on Riemannian manifolds is
naturally formulated in the Stratonovich integral interpreta-
tion, we will consider the connection between both types of
integrals. Let us formulate the stochastic differential equation
�A1� with the Ito interpretation by a corresponding equation
with the Stratonovich interpretation,

dXi = �̃a
i ��,X� � dWa + b̃i��,X�d� . �A8�

There exists a connection between Ito and the Stratonovich
integrals �24–27�, which allows to associate the diffusion
and drift terms in one of the interpretations with the other,

b̃i��,X� = bi��,X� − �abD

2
�a

j ��,X�� j�b
i ��,X� ,

�a
i ��,X� = �̃a

i ��,X� . �A9�

Substituting b̃i�� ,X� into Eq. �A4�, the diffusion operator A
in the Stratonovich interpretation is

DIFFUSION IN THE SPECIAL THEORY OF RELATIVITY PHYSICAL REVIEW E 80, 051110 �2009�

051110-7



A =
D

2
�ab�a

i ��,x��i�b
j ��,x�� j + b̃i��,x��i. �A10�

The Fokker-Planck equation �A6� with respect to the Stra-
tonovich interpretation is then given by

�

��
���,x� =

D

2
�ab�i�a

i ��,x�� j��b
j ��,x����,x��

− �ib̃
i��,x����,x� . �A11�

Introducing the fundamental vector fields

La = �a
i ��,x��i, L0 = b̃i��,x��i, �A12�

the generator A of the stochastic process in the Stratonovich
interpretation can be expressed by the operators La, L0 as
follows:

A =
D

2
�abLaLb + L0. �A13�

Equation �A13� is an important formula for the calculus
on Riemannian manifolds. On a Riemannian manifold, the
driving Wiener process Wa of a stochastic differential equa-
tion is difficult to handle. In differential geometry for a gen-
eral d-dimensional Riemannian manifold Md �with definite
metric signature� equipped with a Christoffel connection �ib

j ,
it is possible to lift a smooth curve ci�t� in Md to a horizontal
curve in the tangent bundle TM �which is endowed with a
Euclidean structure� by using the bundles of orthonormal
frames ea=ea

i �x��i�i ,a=1, . . . ,d�. The orthonormal frame
bundle O�M� is described by the local coordinates �r
= �xi ,ej

i��=O�M�. The infinitesimal motion of a smooth curve
xi�t� in Md is that of �i�t� in O�M� described by the ordinary
differential equations for a parallel transport,

dxi = ea
i �x�d�a,

dea
i �x� = − �ml

i ea
l dxm. �A14�

Here �abea
i �x�ea

i �x�=gij, �iea
j =−�ib

j ea
b gij is the Riemannian

metric and �ab is the flat Euclidean metric, where �ab is the
Kronecker symbol. ri�t� is called the horizontal lift of the
curve xi�t� to the orthonormal frame bundle O�M� and it lies
in the Euclidean space Rd+d2

. The horizontal curve �i�t� cor-
responds uniquely to a smooth curve in the tangent space
�which can be identified with an Euclidean space Rd�. Cor-
respondingly, a random curve can be defined in the same
way as in Eq. �A14� by using the canonical realization of a
d-dimensional Wiener process and substituting d�a

→dWa�t�. Therefore, the stochastic differential equation de-
scribing diffusion on a Riemannian manifold is �26,27�

dxi = ea
i ��� � dWa + bid� ,

dea
i ��� = − �ml

i ea
l ��� � dxm, �A15�

where the components of an arbitrary tangential vector bi are
additionally introduced for a more general situation with an
account of an external force field.

The derivation of the Kolmogorov backward equation
with the definition of the diffusion operator AO�M� can be
performed by the same rules, as in Euclidean space in the
Stratonovich calculus. Corresponding the definition of the
fundamental vector fields La and L0 in Eq. �A12�, one can
now introduce the fundamental horizontal vector fields Ha
and H0 on O�M� for the extended stochastic differential
equation system Eq. �A15�,

Ha = ea
i �

�xi − �ml
i �x�ea

meb
l �

�eb
i ,

H0 = bi��,X��i − �ml
i ea

l ���bm �

�ea
i , �A16�

and the operator AO�M� for the stochastic process in the or-
thonormal frame bundle is given by

AO�M� =
D

2
�abHaHb + H0. �A17�

AO�M� is the horizontal lift of the diffusion generator AM on
the manifold to the orthonormal frame bundle. Obviously,
the projection of a function in O�M� to M with f�r�
= f�x ,0�, r= �xi ,ej

i�, satisfies the relation

AO�M�f�r� = AMf�x� , �A18�

where AM = D
2 �ab�ea

i �ieb
j � j�+bi�i= � D

2 �M +bi�i� and �M
=gij�i� j +gij�ij

k �k is the Laplace-Beltrami operator. The gen-
eralized Kolmogorov backward equation on a Riemannian
manifold is obtained by

�

��
u��,x� = 	D

2
�M + bi�i
u��,x� . �A19�

The Fokker-Planck operator on a Riemannian manifold can-
not be derived directly like in the Euclidean case. But as
explained above, this operator is given by the adjoint of the
diffusion generator A� �which includes the volume element
�g, g=det�gij��. Since the Laplace-Beltrami operator is self-
adjoint �M =�M

� , the generalized Fokker-Planck equation on
a Riemannian manifold takes the form

�	

��
= − divx�b	� +

D

2
�M	 , �A20�

where divx�b	�=g−1/2�i�g1/2bi	� is the divergence operator
in the Riemannian manifold, 	=	�x ,� �y ,0� is the transition
probability with the initial condition 	�x ,0 �y ,0�=��x-y�
and adequate boundary conditions at infinity. The probability
density 
�x ,�� is determined by the same equation with the
initial condition 
�x ,�=0�=
0�x�.
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